
Package: dotCall64 (via r-universe)
September 8, 2024

Type Package

Title Enhanced Foreign Function Interface Supporting Long Vectors

Version 1.1-1

Date 2023-11-28

Description Provides .C64(), which is an enhanced version of .C() and
.Fortran() from the foreign function interface. .C64() supports
long vectors, arguments of type 64-bit integer, and provides a
mechanism to avoid unnecessary copies of read-only and
write-only arguments. This makes it a convenient and fast
interface to C/C++ and Fortran code.

License GPL (>= 2)

URL https://git.math.uzh.ch/reinhard.furrer/dotCall64

BugReports https://git.math.uzh.ch/reinhard.furrer/dotCall64/-/issues

Depends R (>= 3.1)

Suggests microbenchmark, RhpcBLASctl, RColorBrewer, roxygen2, spam,
testthat,

Collate 'vector_dc.R' 'dotCall64.R' 'zzz.R'

RoxygenNote 7.1.1

NeedsCompilation yes

Author Kaspar Moesinger [aut], Florian Gerber [aut]
(<https://orcid.org/0000-0001-8545-5263>), Reinhard Furrer
[cre, ctb] (<https://orcid.org/0000-0002-6319-2332>)

Maintainer Reinhard Furrer <reinhard.furrer@math.uzh.ch>

Date/Publication 2023-11-28 11:30:02 UTC

Repository https://reinhardfurrer.r-universe.dev

RemoteUrl https://github.com/cran/dotCall64

RemoteRef HEAD

RemoteSha baa4573b25984cb7df24df8dbac6eafa10fc60bb

1

https://git.math.uzh.ch/reinhard.furrer/dotCall64
https://git.math.uzh.ch/reinhard.furrer/dotCall64/-/issues
https://orcid.org/0000-0001-8545-5263
https://orcid.org/0000-0002-6319-2332

2 dotCall64

Contents
dotCall64 . 2
vector_dc . 4

Index 6

dotCall64 dotCall64 - Extended Foreign Function Interface

Description

.C64 can be used to call compiled and loaded C/C++ functions and Fortran subroutines. .C64 is
similar to .C and .Fortran, but

1. supports long vectors, i.e., vectors with more than 2^31-1 elements

2. does the necessary castings to expose the R representation of "64-bit integers" (numeric vec-
tors) to 64-bit integer arguments of the compiled function. The latter are int64_t in C code
and integer (kind = 8) in Fortran code

3. provides a mechanism the control duplication of the R objects exposed to the compiled code

4. checks if the provided R objects are of the expected types and coerces them if necessary

Compared to .C, .C64 has the additional arguments SIGNATURE, INTENT and VERBOSE. SIGNATURE
specifies the types of the arguments of the compiled function. INTENT indicates whether the com-
piled function "reads", "writes", or "read and writes" to the R objects passed to the compiled func-
tion. This information is then used to duplicate R objects if and only if necessary.

Usage

.C64(
.NAME,
SIGNATURE,
...,
INTENT = NULL,
NAOK = FALSE,
PACKAGE = "",
VERBOSE = getOption("dotCall64.verbose")

)

Arguments

.NAME character vector of length 1. Name of the compiled function to be called.

SIGNATURE character vector of the same length as the number of arguments of the com-
piled function. Accepted strings are "double", "integer", and "int64". They
describe the signature of each argument of the compiled function.

... arguments passed to the compiled function. One R object for each argument.
Up to 65 arguments are supported.

dotCall64 3

INTENT character vector of the same length as the number of arguments of the compiled
function. Accepted strings are "rw", "r", and "w", which indicate whether the
intent of the argument is "read and write", "read", or "write", respectively. If
the INTENT of an argument is "rw", the R object is copied and the compiled
function receives a pointer to that copy. If the INTENT of an R object is "r",
the compiled function receives a pointer to the R object itself. While this avoids
copying and hence is more efficient in terms of speed and memory usage, it is
absolutely necessary that the compiled function does not alter the object, since
this corrupts the R object in the current R session. When the INTENT is "w",
the corresponding input argument can be specified with the function vector_dc
or its shortcuts integer_dc and numeric_dc. This avoids copying the passed
R objects and hence is more efficient in terms of speed and memory usage. By
default, all arguments have INTENT "rw".

NAOK logical vector of length 1. If FALSE (default), the presence of NA, NaN, and Inf
in the R objects passed through ... results in an error. If TRUE, NA, NaN, and Inf
values are passed to the compiled function. The used time to check arguments
(if FALSE) is considerable for large vectors.

PACKAGE character vector of length 1. Specifies where to search for the function given in
.NAME. This is intended to add safety for packages, which can use this argument
to ensure that no other package can override their external symbols, and also
speeds up the search.

VERBOSE numeric vector of length 1. If 0, no warnings are printed. If 1, warnings are
printed, which help to improve the performance of the call. If 2, additional
debug information is given as warnings. The default value can be changed via
the dotCall64.verbose option, which is set to 0 by default.

Value

list of R objects similar to the list of arguments specified as ... arguments. The objects of the list
reflect the changes made by the compiled C or Fortran function.

References

F. Gerber, K. Moesinger, R. Furrer (2018), dotCall64: An R package providing an efficient in-
terface to compiled C, C++, and Fortran code supporting long vectors, SoftwareX 7, 217-221,
https://doi.org/10.1016/j.softx.2018.06.002.

F. Gerber, K. Moesinger, and R. Furrer (2017), Extending R packages to support 64-bit compiled
code: An illustration with spam64 and GIMMS NDVI3g data, Computer & Geoscience 104, 109-
119, https://doi.org/10.1016/j.cageo.2016.11.015.

Examples

Consider the following C function, which is included
in the dotCall64 package:
void get_c(double *input, int *index, double *output) {
output[0] = input[index[0] - 1];
}
##

4 vector_dc

We can use .C64() to call get_c() from R:
.C64("get_c", SIGNATURE = c("double", "integer", "double"),

input = 1:10, index = 9, output = double(1))$output

Not run:
'input' can be a long vector
x_long <- double(2^31) ## requires 16 GB RAM
x_long[9] <- 9; x_long[2^31] <- -1
.C64("get_c", SIGNATURE = c("double", "integer", "double"),

input = x_long, index = 9, output = double(1))$output

Since 'index' is of type 'signed int' (a 32-bit integer),
it can only address the first 2^31-1 elements of 'input'.
To also address elements beyond 2^31-1, we change the
definition of the C function as follows:
#include <stdint.h> // for int64_t
void get64_c(double *input, int64_t *index, double *output) {
output[0] = input[index[0] - 1];
}

Now, we can use .C64() to call get64_c() from R.
.C64("get64_c", SIGNATURE = c("double", "int64", "double"),

input = x_long, index = 2^31, output = double(1))$output
Note that 2^31 is of type double and .C64() casts it into an
int64_t type before calling the C function get64_c().

The performance of the previous call can be improved by
setting additional arguments:
.C64("get64_c", SIGNATURE = c("double", "int64", "double"),

x = x_long, i = 2^31, r = numeric_dc(1), INTENT = c("r", "r", "w"),
NAOK = TRUE, PACKAGE = "dotCall64", VERBOSE = 0)$r

Consider the same function defined in Fortran:
subroutine get64_f(input, index, output)
double precision :: input(*), output(*)
integer (kind = 8) :: index ! specific to GFortran
output(1) = input(index)
end

The function is provided in dotCall64 and can be called with
.C64("get64_f", SIGNATURE = c("double", "int64", "double"),

input = x_long, index = 2^31, output = double(1))$output

End(Not run)

vector_dc Allocate vectors in .C64()

vector_dc 5

Description

vector_dc and its shortcuts numeric_dc and integer_dc are helper functions used in calls to
.C64. They return an R object of class c("vector_dc", "list"), which contains information
on the type and length of the vector to allocate. Using vector_dc together with INTENT = "w"
argument of .C64 leads to performance gains by avoiding unnecessary castings and copies.

Usage

vector_dc(mode = "logical", length = 0L)

numeric_dc(length = 0)

integer_dc(length = 0)

Arguments

mode character vector of length 1. Storage mode of the vector.

length numeric vector of length 1. Length of the vector.

Value

object of class vector_dc and list.

Examples

vector_dc("integer", 20)

Index

.C, 2

.C64, 5

.C64 (dotCall64), 2

.Fortran, 2

dotCall64, 2

integer_dc, 3
integer_dc (vector_dc), 4

numeric_dc, 3
numeric_dc (vector_dc), 4

vector_dc, 3, 4

6

	dotCall64
	vector_dc
	Index

